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Heterogeneity as a feature: unraveling chromatin’s role in nuclear mechanics
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ABSTRACT
Mechanical forces are a ubiquitous feature of the cellular environment. These forces propagate to 
the nucleus, where the mechanical response is critical for cellular function and survival. In addition 
to the nuclear lamina and cytoskeletal connections, chromatin is a key structural and mechan
oresponsive element which not only contributes to bulk stiffness but also dynamically adapts its 
organization in response to mechanical stress. Crucially, chromatin is not a uniform material – its 
organization and mechanical properties vary across time, cell state, and even within individual 
nuclei. This heterogeneity underpins compartmentalization, gene regulation, and potentially, 
disease states when disrupted. In this review, we summarize recent experimental advances that 
have illuminated chromatin’s role in nuclear mechanics, emphasizing the importance of hetero
geneity. We argue that an integrated, multiscale, and quantitative framework is essential for 
dissecting chromatin’s mechanical contributions. By doing so, the field will be better positioned 
to link nuclear mechanics to functional biological outcomes.
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Introduction

Mechanical stress is a constant in the cellular envir
onment in vivo. Circulating blood and immune cells 
are subjected to shear forces, migrating cells encoun
ter spatial confinement, and tissue-resident cells 
experience persistent compression (Figure 1A). 
These mechanical deformations can propagate to 
the nucleus, causing it to deform [1,2]. The nucleus 
plays a central role in sensing and responding to 
these physical cues, and its ability to adapt is critical 
for maintaining homeostasis [3–6].

While nuclear mechanics have traditionally been 
attributed to the lamina and connection to the cytos
keleton, in recent years, chromatin has emerged as 
a key structural and mechanoresponsive element [7– 
10]. Chromatin occupies up to 52% of the nuclear 
volume and is thus a major structural component, 
strongly contributing to the overall stiffness of nuclei 
and acting as a primary force-bearing element [11,12] 
(Figure 1B). Beyond its structural role, chromatin 
actively adapts its organization in response to 

mechanical cues across multiple scales. On the mesos
cale, this affects chromatin compartmentalization. 
Forces at this scale arise from active processes includ
ing transcription and interaction with biomolecular 
condensates, resulting in repositioning of domains or 
modulation of the local viscoelasticity (Figure 1C). On 
the molecular scale, these changes in viscosity influ
ence diffusion and activity of chromatin-interacting 
factors including translocating motors [13]. Thus, 
chromatin integrates mechanical signals into struc
tural and functional adaptations across length 
scales [14].

Importantly, chromatin’s non-equilibrium nat
ure strongly influences mechanics across scales. 
Chromatin composition and organization are 
dynamic, varying over time and with epigenetic 
state, for example, during the cell cycle as the 
genome replicates and compacts into mitotic chro
mosomes, or during embryonic development as 
pluripotent cells transition toward differentiation 
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[15–17]. These processes introduce substantial het
erogeneity in chromatin structure across a cell 
population, leading to corresponding variability 
in nuclear mechanical properties. At the same 
time, heterogeneity exists within individual nuclei: 
local stiffness, viscosity, and mechanical respon
siveness vary widely depending on chromatin 
compaction, transcriptional activity, and molecu
lar interactions (Figure 1C) [18,19]. This interior 
mechanical heterogeneity is thus tightly linked 
with functional compartmentalization. Loss of 
this mechanical heterogeneity could disrupt 
nuclear organization and gene regulation, poten
tially contributing to the development of disease. 
Chromatin-driven mechanical diversity is there
fore present both between cells and within each 
nucleus, reflecting different roles in functional 
organization.

Understanding chromatin’s complex role in 
nuclear mechanics thus requires an approach that 
spans multiple time and length scales. By account
ing for the inherently non-equilibrium nature of 
the nuclear environment and developing robust 
methods to quantify mechanical properties, the 
field can advance toward a more integrated view 
of chromatin’s role in mechanics. Such insights are 
critical to move toward understanding how chro
matin mechanics contributes to diseases, including 

cancer and developmental disorders. Here, we 
review how the field has experimentally 
approached the role of chromatin in nuclear 
mechanics over multiple scales and provide per
spectives for future opportunities.

Chromatin in nuclear stiffness and 
deformability

Chromatin strongly contributes to the stiffness 
and deformability of nuclei [20]. It is thus intuitive 
that changes in the composition, organization and 
architecture of chromatin are reflected in the 
mechanical properties of the nucleus (Figure 2). 
Several methods have been employed to observe 
these changes [21], typically by applying an exter
nal force to the nucleus, either in isolation or in 
whole cells, and quantifying its deformation over 
time (Figure 3A). From the resulting force- 
deformation curves, the stiffness of the nucleus is 
extracted in the form of the spring constant (force 
over deformation) or Young’s modulus (stress 
over strain). Additionally, material properties can 
be derived through stress-relaxation or creep tests, 
or by applying oscillatory forces. The most widely 
used techniques are atomic force microscopy [22– 
24], optical and magnetic tweezers [25–27], and 
micropipette aspiration (Figure 3A) [28].

Figure 1. Multiscale contributions of chromatin to nuclear mechanics A. Within tissues, cells are subjected to a range of mechanical forces 
that are transmitted to the nucleus. These forces vary depending on cell type, cell cycle stage, and physiological or pathological state. B. The 
mechanical response of the nucleus arises from multiple components, including the nuclear lamina, heterochromatin, and euchromatin, each 
contributing differently depending on the magnitude and duration of the applied force. C. The nuclear interior can be thought of as a gel with 
regions of differential density and crosslinking (top), driven by nuclear factors including chromatin (bottom). Euchromatic (EC) regions are 
typically acetylated, transcriptionally active, and decondensed, contributing minimally to nuclear stiffness and viscoelasticity. In contrast, 
increased levels of H3K9me3 or H3K27me3 promote chromatin compaction, enhancing stiffness of heterochromatic (HC) regions. Together, 
the spatial and chemical organization of chromatin and the structural scaffold of lamins define the mechanical behavior of the nucleus across 
timescales and deformation regimes.
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A general intuition is that densely packed chro
matin regions are more resistant to deformation 
than loosely packed areas. Bulk chromatin compac
tion can be induced by exposing nuclei to divalent 

cations such as Ca2+ and Mg2+. Consistent with this 
idea, cation-induced compaction reliably stiffens 
nuclei in micropipette aspiration studies [16,29,30]. 
An alternative approach to affect chromatin 

Figure 2. Effectors of chromatin mechanics. Loss of heterochromatin (HC)-associated factors—including HP1α, H3K9me2/3, 
H3K27me, loss of the INM-anchoring protein heh, and increased levels of histone acetylation results in an approximately 2-fold 
decrease in nuclear stiffness. Conversely, nuclear stiffness increases by up to ~2-fold upon treatment with divalent cations, inhibition 
of BRG1 (the catalytic subunit of the SWI/SNF chromatin remodeling complex), or increased levels of heterochromatin-associated 
marks such as H3K9me2/3. Together, these perturbations illustrate how chromatin compaction state, localization, and biochemical 
modifications modulate nuclear mechanics.

Figure 3. Quantitative techniques for nuclear mechanics. (A) Overview of methods used to probe nuclear organization and 
mechanics across scales. (B) Passive microrheology, such as locus tracking and diffusion-based models, assumes thermal equilibrium. 
(C) In contrast, active rheology techniques introduce controlled perturbations and enable modeling of nonequilibrium mechanical 
responses at the mesoscale.
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compaction is through altering histone-tail modifi
cations. Bulk enzymatic cleavage of histone tails 
leads to decompaction, and softens isolated nuclei 
as measured with optical tweezers [31], but more 
specifically, up- or downregulation of specific mod
ifications on histone tails changes compaction state, 
thereby tuning nuclear mechanical properties. 
Acetylation of histone tails is generally associated 
with decondensed chromatin as typically found in 
euchromatin regions. Accordingly, nuclei become 
up to roughly two-fold softer as the extent of histone 
acetylation increases [7,8,29,32]. The opposite effect, 
stiffer nuclei upon increasing heterochromatin 
through histone methylation levels, is also observed 
[8]. The observed nuclear stiffening was attributed to 
an increase of constitutive heterochromatin marks 
H3K27me3 and H3K9me3, typically found in het
erochromatic regions [8]. Evidence in support of this 
hypothesis is provided by specific inhibition of 
SUV39H1 which mediates H3K9 trimethylation, 
resulting in nuclear softening by nearly two-fold 
[5,33]. Similar effects were found in isolated yeast 
nuclei. Nuclei lacking H3K9me2/3 demethylase were 
stiffer, whereas nuclei lacking H3K9 methyltransfer
ase were softer [34]. Together, these studies show 
that nuclear stiffness can be regulated by modulating 
the compaction state of chromatin (Figure 2).

Chromatin is further shaped and organized by 
chromatin-binding proteins that often interact 
with histones and their modifications. Several of 
these proteins have been shown to alter nuclear 
mechanics, but it is difficult to disentangle the 
contribution of these proteins themselves, versus 
their downstream effect on epigenetic state. One 
such protein is HP1α, a histone methylation reader 
that has also been implicated in the establishment 
and maintenance of histone methylation and het
erochromatin [35,36]. As measured with micro
pipette aspiration, rapid depletion of HP1α 
reduced the mechanical strength of isolated nuclei 
by roughly two-fold [37]. It was tested if this effect 
was attributed to altered levels of H3K9- 
methylated histones, but importantly, this 
mechanical role was shown to be independent of 
histone methylation and heterochromatin forma
tion. This indicates that HP1α has a structural role 
that impacts nuclear mechanics that is indepen
dent of chromatin compaction through histone 

modifications, as was also shown in vitro [38]. 
A similar key mechanical contribution was 
described for Swi6 (HP1 homologue in yeast) 
[34]. Interestingly, specifically the condensed, 
rather than the chromatin-bound Swi6 pool, was 
shown to impart nuclear stiffness [34]. These find
ings suggest a separate role for HP1-like proteins 
in maintaining nuclear stiffness, potentially pro
viding mechanical support through condensate 
formation [38].

Nuclear mechanics may also be regulated by the 
localization of chromatin, specifically peripheral chro
matin. A dense layer of heterochromatin is typically 
present directly adjacent to the nuclear periphery, 
which is physically tethered to the nuclear membrane 
through connections with inner nuclear membrane 
proteins and the nuclear lamina [39,40]. A study in 
yeast showed that tethering of chromatin to the per
iphery supports mechanics of the nucleus (Figure 2) 
[26]. Nuclei lacking the inner nuclear membrane 
(INM) chromatin-binding protein heh2 softened by  
~1.5-fold, and showed strongly reduced effective vis
cous drag coefficient from ~2 to 0.5 pN � s � nm� 1[26]. 
Nuclei lacking other INM chromatin-binding pro
teins heh1 and ima1 showed a similar but milder 
effect on nuclear stiffness and viscosity [26]. 
However, as yeast lack lamins, it is unclear how this 
translates to mammalian nuclei, where lamins pro
vide essential tethering points for chromatin. The 
interplay between chromatin and lamins makes it 
challenging to experimentally disentangle their indi
vidual contributions to nuclear mechanics, as chro
matin perturbations may also indirectly influence 
interactions with the lamina [7]. Alternative chro
matin organizational structures, such as the 
‘inverted’ phenotype of rod photoreceptor cells 
[41], could be an exciting avenue to explore this 
connection.

Chromatin adaptations in response to force

Chromatin not only serves as an important struc
tural component of the nucleus but also acts as 
a mechanoresponsive scaffold, modulating its 
architecture [5] and/or gene expression programs 
[42] in response to mechanical cues. Forces may 
directly induce nuclear deformations [2], or may 
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be indirectly propagated to the nucleus through 
the cytoskeleton [43] and/or other mechanosensi
tive components such as force-sensitive ion chan
nels [5], each triggering chromatin adaptations.

Changes in chromatin compaction and epige
netic state have been found in response to sub
strate stretching [5,44–48], cell compression [49], 
and constricted migration [50–54]. However, the 
reported effects of these mechanical perturbations 
on chromatin are variable. Force has been found 
to both increase heterochromatin marks 
[49,52,53], decrease heterochromatin marks 
[5,54,55], switch from H3K9me2/3 to H3K27me3 
[47], and spatially redistribute heterochromatin 
regions [48,51]. The discrepancies in these studies 
stress that chromatin’s response to force is highly 
variable. This is partially attributed to the method 
used to apply force [21], and the extent, duration, 
direction and nature (i.e. compression or stretch
ing) of force application [21,56,57]. Quantitative 
techniques such as optical tweezers can potentially 
overcome this source of variability, as they can 
ensure that each cell or nucleus experiences the 
exact same force [58] (Figure 3). Excitingly, this 
opens up the possibility of using these precise 
manipulations to trigger predictable responses. 
Furthermore, large contributing factors to these 
different outcomes are the use of different cell 
types and inherent heterogeneity between cells. 
Next, steps toward understanding chromatin’s 
response to force should aim to understand this 
heterogeneous response as a functional feature, as 
it enables tissues and cells to adapt to diverse 
environments and fulfill specialized roles.

Physical cues also regulate chromatin indirectly 
through downstream signaling pathways. Local 
signals are sensed by integrins or stretch- 
activated receptors and transduced through sec
ondary messengers, ultimately resulting in the 
activation of transcription factors that shuttle 
into the nucleus [59]. Several of such mechano
sensitive transcription factors have been identified, 
including YAP/TAZ [60], MAL-SRF [61,62] and 
NF-κB [63]. It is currently not well understood if 
changes in chromatin composition reflect direct 
consequences of physical force, or of force- 
activated signaling pathways [56]. A number of 
hypotheses have been put forward. Physical force 

could lead to local DNA damage, which in turn 
recruits repair machinery and alters chromatin 
state [22,64,65]. Alternatively, force-induced 
deformations of the nucleus and associated endo
plasmic reticulum can lead to an influx of calcium, 
which in turn can influence local compaction state 
and compartmentalization of chromatin modifiers 
[5]. Additionally, changes in actin dynamics upon 
mechanical stress may allow chromatin modifiers 
such as HDAC3 that are normally sequestered in 
the cytoplasm to accumulate into the nucleus 
[49,66]. Lastly, influx of mechanosensitive tran
scription factors might lead to altered nuclear 
properties by the presence of these proteins them
selves, altered transcriptional activity, changes in 
histone marks, or local decompaction. Microscopy 
approaches that capture spatial and temporal 
changes in chromatin organization might help 
infer how chromatin responds to mechanical 
forces, potentially shedding light on underlying 
sensing mechanisms [56].

Mesoscale chromatin mechanics

The current view of interior chromatin organiza
tion is that dynamic loops form within compart
ments of similar transcriptional activity [67]. 
Euchromatin compartments are open and tran
scriptionally active, whereas heterochromatin is 
compacted and transcriptionally silenced [68,69]. 
Their spatial location correlates with transcrip
tional status: heterochromatic domains often 
reside at the nuclear periphery or cluster around 
the nucleolus [40,70,71]. Indeed, this containment 
to distinct locally defined regions within the 
nucleus has been confirmed by genomic methods 
[72] (Figure 3A).

Reconciling this entrenched, compartmentalized 
structure of chromatin with its dynamic, mechan
oresponsive nature remains a challenge [73]. 
Biomolecular condensates offer a compelling 
bridge, as their biochemical composition and phy
sical properties are highly tunable and responsive 
to cellular cues. Condensates are ubiquitous within 
the nucleus, and their interactions with chromatin 
are essential to both their formation and function 
[74,75]. For instance, transcription initiation con
densates are thought to promote gene expression, 
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primarily associating with euchromatin [76,77], 
while repressive condensates localize to hetero
chromatin, where they may contribute to tran
scriptional silencing [78,79]. The preferential 
localization of condensates to specific chromatin 
compartments likely contributes to the establish
ment of selective inclusion and exclusion mechan
isms, which can generate local forces. In addition, 
tethering of chromatin loci to condensates can 
modulate chromatin organization [80]. The mate
rial state of the condensate, ranging from liquid- 
like to gel-like, will subsequently affect the 
mechanical changes [81]. In this way, condensates 
may act as dynamic mediators that both sense and 
reshape the local chromatin environment, inte
grating structural stability with mechanical and 
functional adaptability.

A recent study by Strom et al. explores how 
condensate-driven forces can influence chroma
tin mechanics and position [82] by using engi
neered biomolecular condensates that form near 
specific chromatin regions. The fusion and dis
solution dynamics of these condensates generates 
sub-pN interfacial forces on the chromatin, 
thereby repositioning nearby chromatin loci. 
A different method by Keizer et al. also suc
ceeded in physically pulling loci through the 
nuclear environment [83]. Using magnetic nano
particles targeted to a specific genomic locus, the 
locus was pulled in response to controlled mag
netic pulse. Importantly, the chromatin trajec
tories exhibit scale-free behavior, indicating 
there is no single characteristic time- or lengths
cale governing these dynamics. This suggests that 
chromatin behaves as a complex network, and 
forces over a wide range of scales can tune its 
mechanical response. Both methods showed rela
tively low forces (~1 pN) were sufficient to pull 
chromatin across variable chromatin densities, 
suggesting that loci are not rigidly fixed in 
space, even within structurally defined domains. 
The development of these techniques toward spe
cific loci and applications will provide new 
insights into how chromatin responds to 
force [84].

These recent methods can potentially tackle 
another challenge: measuring inner nuclear viscosity, 
which so far has been challenging. A traditionally 
employed approach is passive microrheology [85] 

(Figure 3B). With this technique, the mean-squared 
displacement of a probe over time is used to deduce 
the diffusion coefficient, leading to viscosity calcula
tion through the generalized Stokes-Einstein relation, 
which assumes thermodynamic equilibrium [86]. 
Several studies have used tracking techniques for sin
gle chromatin loci to monitor their mean-squared 
displacement [87–89]. These works concur that chro
matin loci are subdiffusive, suggesting confinement. 
However, more meaningful measurements in active 
materials such as living cells require driving the sys
tem out of equilibrium. This could be achieved with 
active microrheology, where the probe is forced 
through the material, setting fluid and particles in 
motion (Figure 3C). It is notoriously difficult to per
form active rheology in living cells, primarily because 
the probes used to date are too invasive, with probe 
injection leading to low survival rates and impacting 
mechanical fidelity [90–93]. The minimally invasive 
probes in the form of magnetic nanoparticles or con
densates used by Keizer and Strom circumvent this 
issue [82,83] (Figure 3C). By monitoring the displace
ment of loci over time as described, nuclear viscosity 
can be inferred or estimated, distinguishing between 
elastic (chromatin-network) and viscous (nucleoplas
mic) contributions. Both methods measure viscosity 
in a similar range (~103-104 pa � s). However, it is 
again emphasized that mechanical properties are not 
uniform, even within a single nucleus. This intranuc
lear heterogeneity has functional implications, regu
lating how different regions react to mechanical force 
[23]. A combination of these new methods with 
advanced imaging techniques (Brillouin microscopy, 
elastography, FLIM, etc.) will enable visualization of 
the intranuclear heterogeneity [19,94], working 
toward an understanding of how processes such as 
transcriptional activity and local nucleosome stacking 
direct these properties, as this is currently limited.

Connecting molecular actions to bigger 
consequences

Interactions between nucleosomes play a critical 
role in chromatin compaction and organization. In 
vitro force-spectroscopy studies using reconsti
tuted nucleosomal arrays have robustly quantified 
the forces at which nucleosome stacking and wrap
ping are disrupted to be 5-10 pN [95–99]. The 
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same reconstituted chromatin fibers, typically con
sisting of 12 nucleosomes, have been shown to 
form condensates in a variety of conditions 
[100,101]. Both unstacking forces and propensity 
to form condensates depend on the presence of 
linker histones, nucleosome repeat length, histone 
modification, ionic concentrations, and protein 
interactions. The emerging hypothesis is that for
mation of tightly stacked chromatin increases the 
force required to disrupt this organization within 
the fiber, but prevents interactions between differ
ent fibers, resulting in reduced propensity to form 
higher-order condensates. The parallels in experi
mental set-up between these two length scales 
allow for interesting multi-scale interpretations, 
including the range of various factors that influ
ence this organization, hinting at what could be 
the source of variable displacement forces in the 
heterogeneous nuclear interior. It should, however, 
be considered that the majority of these in vitro 
characterizations on both the molecular and con
densate scales are performed on homogeneous 
nucleosomal arrays. All octamers are assembled 
on repetitive sequences with equal spacing, which 
does not reflect the situation in live cells. 
Incorporating this molecular heterogeneity is 
a logical next experimental step.

The last decade, the single-molecule field has 
made great progress in understanding the molecu
lar mechanism of DNA-organizing motors. 
Structural Maintenance of Chromatin (SMC) pro
teins organize chromatin by extruding loops, 
fueled by ATP [102]. The formed loops could 
function as a way to bring regulatory elements 
such as promoters and enhancers into physical 
contact, thereby directly impacting gene expres
sion, but more recent evidence suggests these 
loops are transient in nature [103]. In addition, 
loops and gene expression levels are largely main
tained after depletion of SMC protein cohesin 
[104]. This again invites an alternative view that 
bridges the dynamic nature of chromatin with the 
structural organization into loops.

An interesting perspective is that the dynamic 
formation and disruption of these loops functions 
to maintain chromatin fluidity [105]. 
Compartments collapsed into phase-separated 
compartments are difficult to penetrate for certain 
factors, and spontaneous escape of chromatin loci 

is unlikely as it requires a few pN. ATP driven 
SMC motors could help fluidize this organization. 
SMC proteins have a sub-pN stalling force, mean
ing that they cannot extrude loops against forces 
higher than 1 pN [106–108]. This is close to the 
force required for actively pulling a locus across 
the nucleus, indicating that loop extrusion and 
locus pulling could aid one another to reorganize 
chromatin. This idea of SMC motors as compart
ment disruptors furthermore implies that their 
molecular action affects the fluidity and deform
ability of the whole nucleus. This connection is 
not entirely unlikely, as a similar link between 
motor activity and fluidization exists for the 
SWI/SNF/BAF chromatin-remodeling complex. 
Early single-molecule experiments demonstrated 
that this ATP-driven complex can slide along 
DNA and reposition or evict nucleosomes [109– 
111], but recent work showed that when this 
activity is abolished in cells through chemical 
inhibition of the BRG-1 motor subunit, nuclei 
stiffened [112] (Figure 2). Furthermore, these 
nuclei showed decreased dissipation when sub
jected to force, indicating a loss of nuclear fluidity 
in the absence of this active remodeling process 
[112]. Which and how active processes contribute 
to chromatin fluidization is testable, so future 
work will refine and revise this model, connecting 
the molecular scale back to the nuclear scale.

Conclusion and perspective

To further understand the role of chromatin as 
force responder, a key ambition should be to 
shift to research grounded in quantitative mea
surements across multiple spatial and temporal 
scales, with a critical emphasis on heterogeneity – 
both between different nuclei and within the 
nuclear interior. Chromatin is not a passive scaf
fold, but a dynamic organelle that shapes the phy
sical properties of the nucleus. These mechanical 
properties influence and respond to key nuclear 
processes, but they cannot be understood without 
measuring the forces, displacements, and material 
responses involved. These properties are not uni
form across cell-types and have considerable spa
tial and temporal variability. We must not treat 
this heterogeneity as noise, but as a fundamental 
feature. Only multi-scale quantitative approaches 
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can capture this complexity and reveal how chro
matin mechanics serve to function.
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